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Resonator: Apply entanglement to
Qubit couple qubits
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Car Issue Quantum analogy Type

Steering too hard Pulse distortion Control
Brakes delayed Crosstalk in gates Control
Faulty battery TLS in dielectrics Fab
Poor alignment Parasitic coupling Fab/ layout

Leaky fuel injector QP poisoning Fab
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Engineered for Coherence.
Designed for Speed.
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* d QEC and Correlated Errors

« QEC necessity (physical vs. logical qubits)
* Architectures: repetition code, surface code etc.

* Errors are assumed to be: independent and local
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Suppressing quantum errors by scaling a surface
©O © 0 code logical qubit by Google Quantum Al. Link:
‘ y O https://www.nature.com/articles/s41586-022-05434-1
easure Data

Exponential suppression of bit or phase errors with
cyclic error correction by Google Quantum Al. Link:

hitps://www.nature.com/articles/s41586-021-03588-y
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*  Correlated Errors Analogy
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* 1 Correlated Errors

» Correlated error burst through space and time
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Correlated Charge Noise and Relaxation Errors in

Superconducting Qubits by C.D. Wilen et al. Link:
https://arxiv.org/pdf/2012.06029
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* J High-energy Impact Events

* High-energy radiation deposits up to 1 MeV, creating high-energy phonons

 High-energy impacts -> error bursts
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* 1 Alternative Strategies

 Phonon or QP traps reduce both the temporal and spatial extent, but

QP poisoning is still observed.

* Low-radiation underground facility reduces event rate of

impacts, but remaining events remain unmitigated.

Engineering cryogenic setups for 100-qubit scale

superconducting circuit systems by S. Krinner et al. Link:
https://epjguantumtechnology.springeropen.com/articles/

10.1140/epjqt/s40507-019-0072-0
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* 1 Chosen Strategy

 GAP ENGINEERING
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* Ay Is sensitive to thickness
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Weakly GE qubit
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* 1 Measuring Correlated Errors
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Correlated Error Bursts in a Gap-Engineered Superconducting Qubit Array
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One of the roadblocks towards the implementation of a fault-tolerant superconducting quantum
processor is impacts of ionizing radiation with the qubit substrate. Such impacts temporarily elevate
the density of quasiparticles [QPs) across the device, leading to correlated qubit error bursts. The
most damaging errors—7T) errors—stem from QP tunneling across the qubit Josephson junctions
(Jls). Hecently, we demonstrated [Phys. Rev. Lett. 133, 240601 (2024)] that this type of error can
be strongly suppressed by engineering the profile of superconducting gap at the Jls in & way that
prevents QF tunmeling. In this work, we identify a new tvpe of impact-induced correlated error that
persists in the presence of gap engineering. We ohserve that impacts shift the frequencies of the
affected qubits, and thus lead to correlated phase errors. The frequency shifts are systematically
negative, reach values up to 3 MHz, and last for ~ 1 ms. We provide evidence that the shifts originate
from QF-qubit interactions in the 1] region. Further, we demonstrate that the shifi-induced phase
errors can be detrimental to the performance of quantum error correction protocols.

. INTRODUCTION

Realization of a fault-tolerant guantum processor
hinges on the ability to correct errors affecting individual
physical qubits. When errors are rare and uncorrelated,
they can be dealt with using quantum error correction
(QEC). The performance of many QEC codes (e.g., the
surface code) is expected to improve exponentially with
the mumber of physical qubits; in principle, one should be
able to reach an arbitrarily low logical error rate (LER)
by scaling up the system [1]. However, this scaling behav-
ior breaks down when corvelated error bursis exist that
simultaneonsly affect a large fraction of qubits. Such
burstz then set a floor on the LER for QEC codes.

In superconducting quantum processors, one source of
correlated error bursts is impacts of ionizing radiation
with the qubit substrate [2-10]. The impacts generate
a large mumber of high-energy phonons in the substrate
that rapidly spread across the qubit array, see Fig. 1(a).
The superconducting films comprising the gubits effi-
ciently absorh these phonons: in the proeess, the phonon
energy converts into Bogolinbov quasiparticle (QP) ex-
citations. It is the proliferation of QPs that leads to
correlated gqubit errors. The most detrimental situation
is realized when QPs tunnel across the qubits’ Josephson
Junctions (1Jz). A tunneling QP strongly couples to the
electric field of the qubit, and readily absorbs a qubit
excitation [11-17]. As a result, the gubit T} degrades
to sub-ps seale following impacts [6). The degradation
persistz for thousands of QEC cyeles (a evele duration
is ~ 1ps [18-20]) and, therefore, leads to a logical error
with a high probability [21].

* These authors contributed equally: viadkurilovich@igoogle com,
gabriellelerfigoogle com, opremeak@igoogle oom
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FI:. 1. The fallout from ionizing radiation in gap engi-
neered qubits. (&) lonizing radiation impacts deposit large
energies in the qubit substrate, which propagate through-
out the deviee in the form of high-energy phonons. These
phonons break Cooper pairs in the superconductors leading
to elevated quasiparticle ((JP) densities, Ty,. The presence
of QPs near the Josephson junctions (1Js) of the qubits re-
sults in correlated errors. (b) A difference 64 in the super-
conducting gaps of the J.J leads exponentially suppresses QF
tunneling, provided the characteristic QP energy, Ty, satis-
fies &A — by % Tum [fy is the qubit frequency]. This pro-
tects the qubits from QP-induced T errors. (e} Even though
(Ps cannot tunnel, their elevated density results in qubit fre-
quency shifts df, and thus leads to correlated phase errors [to
produce the plot, we use Eq. (1) with @ = (.77 computed in
Appendix (3]

Fortunately, there exists a way to inhibit QP tunneling
at the hardware level. The idea is to engineer the pro-
file of the superconducting gap across the JJs to form a
potential barrier for QPs, see Fig. 1(b). If the barrier is
sufficiently large then QPs cannot tunnel [22-28]. This
protects the qubits from QP-induced 77 ervors. In an
earlier work, we verified the effectiveness of this strategy
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