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Quantum Information Processing 

→ X ↑

jφð~θÞi≡Uð~θÞjϕi. Even if jϕi is a simple product state and
Uð~θÞ is a very shallow circuit, jφð~θÞi can contain complex
many-body correlations and span an exponential number of
standard basis states.
We can express the mapping Uð~θÞ as a concatenation

of parametrized quantum gates, U1ðθ1ÞU2ðθ2Þ…UnðθnÞ.
In this work, we parametrize our circuit according to
unitary coupled cluster theory [20,22,23]. As described
in Appendix D, unitary coupled cluster theory predicts that
the ground state of Eq. (1) can be expressed as

jφðθÞi ¼ e−iθX0Y1 j01i; ð3Þ

where jϕi ¼ j01i is the Hartree-Fock (mean-field) state
of molecular hydrogen in the representation of Eq. (1).
As discussed in Appendix D, unitary coupled cluster
theory is widely believed to be classically intractable and
is known to be strictly more powerful than the “gold
standard” of classical electronic structure theory, coupled
cluster theory [43–46]. The gate model circuit that
performs this unitary mapping is shown in the software
section of Fig. 1.
VQE solves for the parameter vector ~θ with a classical

optimization routine. One first prepares an initial ansatz
jφð~θ0Þi and then estimates the ansatz energy Eð~θ0Þ by
measuring the expectation values of each term in Eq. (1)
and summing these values together as

Eð~θÞ ¼
X

γ

gγhφð~θÞjHγjφð~θÞi; ð4Þ

where the gγ are scalars and the Hγ are local Hamiltonians

as in Eq. (1). The initial guess ~θ0 and the corresponding
objective value Eð~θ0Þ are then fed to a classical greedy
minimization routine (e.g., gradient descent), which then
suggests a new setting of the parameters ~θ1. The energy
Eð~θ1Þ is then measured and returned to the classical outer
loop. This continues for m iterations until the energy
converges to a minimum value Eð~θmÞ, which represents
the VQE approximation to E0.
Because our experiment requires only a single varia-

tional parameter, as in Eq. (3), we elect to scan 1000
different values of θ ∈ ½−π; πÞ in order to obtain expect-
ation values that define the entire potential energy curve.
We do this to simplify the classical feedback routine but at
the cost of needing slightly more experimental trials. These
expectation values are shown in Fig. 2(a) and the corre-
sponding energy surfaces at different bond lengths are
shown in Fig. 2(b). The energy surface in Fig. 2(b) is
locally optimized at each bond length to emulate an on-the-
fly implementation.
Figure 3(a) shows the exact and experimentally deter-

mined energies of molecular hydrogen at different bond
lengths. The minimum energy bond length (R ¼ 0.72 Å)
corresponds to the equilibrium bond length, whereas the
asymptote on the right-hand part of the curve corresponds
to dissociation into two hydrogen atoms. The energy
difference between these points is the dissociation energy,
and the exponential of this quantity determines the chemi-
cal dissociation rate. Our VQE experiment correctly pre-
dicts this quantity with an error of ð8% 5Þ × 10−4 hartree,
which is below the chemical accuracy threshold. Error bars

FIG. 1. Hardware and software schematic of the variational quantum eigensolver. (Hardware) micrograph shows two Xmon transmon
qubits and microwave pulse sequences to perform single-qubit rotations (thick lines), dc pulses for two-qubit entangling gates (dashed
lines), and microwave spectroscopy tones for qubit measurements (thin lines). (Software) quantum circuit diagram shows preparation of
the Hartree-Fock state, followed by application of the unitary coupled cluster ansatz in Eq. (3) and efficient partial tomography (Rt) to
measure the expectation values in Eq. (1). Finally, the total energy is computed according to Eq. (4) and provided to a classical optimizer
which suggests new parameters.
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How to measure the quantum state?
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the cost of needing slightly more experimental trials. These
expectation values are shown in Fig. 2(a) and the corre-
sponding energy surfaces at different bond lengths are
shown in Fig. 2(b). The energy surface in Fig. 2(b) is
locally optimized at each bond length to emulate an on-the-
fly implementation.
Figure 3(a) shows the exact and experimentally deter-

mined energies of molecular hydrogen at different bond
lengths. The minimum energy bond length (R ¼ 0.72 Å)
corresponds to the equilibrium bond length, whereas the
asymptote on the right-hand part of the curve corresponds
to dissociation into two hydrogen atoms. The energy
difference between these points is the dissociation energy,
and the exponential of this quantity determines the chemi-
cal dissociation rate. Our VQE experiment correctly pre-
dicts this quantity with an error of ð8% 5Þ × 10−4 hartree,
which is below the chemical accuracy threshold. Error bars

FIG. 1. Hardware and software schematic of the variational quantum eigensolver. (Hardware) micrograph shows two Xmon transmon
qubits and microwave pulse sequences to perform single-qubit rotations (thick lines), dc pulses for two-qubit entangling gates (dashed
lines), and microwave spectroscopy tones for qubit measurements (thin lines). (Software) quantum circuit diagram shows preparation of
the Hartree-Fock state, followed by application of the unitary coupled cluster ansatz in Eq. (3) and efficient partial tomography (Rt) to
measure the expectation values in Eq. (1). Finally, the total energy is computed according to Eq. (4) and provided to a classical optimizer
which suggests new parameters.
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II. SUPERCONDUCTING QUANTUM CIRCUITS

Circuit components with spatial dimensions that are
small compared to the relevant wavelength can be treated
as lumped elements (Devoret, 1997), and we start this
section with a particularly simple lumped-element cir-
cuit: the quantum LC oscillator. We subsequently discuss
the closely related two- and three-dimensional microwave
resonators that play a central role in circuit QED experi-
ments and which can be thought of as distributed versions
of the LC oscillator with a set of harmonic frequencies.
Finally, we move on to nonlinear quantum circuits with
Josephson junctions as the source of nonlinearity, and
discuss how such circuits can behave as artificial atoms.
We put special emphasis on the transmon qubit (Koch
et al., 2007), which is the most widely used artificial atom
design in current circuit QED experiments.

A. The quantum LC resonator

An LC oscillator is characterized by its inductance
L and capacitance C or, equivalently, by its angular
frequency !r = 1/

p
LC and characteristic impedance

Zr =
p
L/C. The total energy of this oscillator is given

by the sum of its charging and inductive energy

HLC =
Q2

2C
+

�2

2L
, (1)

where Q is the charge on the capacitor and � the flux
threading the inductor, see Fig. 1. Charge is related to cur-
rent, I, from charge conservation by Q(t) =

R t
t0
dt0 I(t0),

and flux to voltage from Faraday’s induction law by
�(t) =

R t
t0
dt0 V (t0), where we have assumed that the

voltage and current are zero at an initial time t0, often
taken to be in the distant past (Vool and Devoret, 2017).

It is instructive to rewrite HLC as

HLC =
Q2

2C
+

1

2
C!2

r�
2. (2)

This form emphasizes the analogy of the LC oscillator
with a mechanical oscillator of coordinate �, conjugate
momentum Q, and mass C. With this analogy in mind,
quantization proceeds in a manner that should be well
known to the reader: The charge and flux variables are
promoted to non-commuting observables satisfying the
commutation relation

[�̂, Q̂] = i~. (3)

It is further useful to introduce the standard annihilation
â and creation â† operators of the harmonic oscillator.
With the above mechanical analogy in mind, we choose
these operators as

�̂ = �zpf(â
† + â), Q̂ = iQzpf(â

† � â), (4)

0 �5 0 5

�/

|0

|1

|2

V
(�

)
(a

rb
.

u
n
it
s)



L C

R
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p
on

se
(a

rb
.

u
n
it
s)

!r

�/�0

FIG. 1 (Left) Harmonic potential versus flux of the LC circuit
with �0 = h/2e the flux quantum. (Right) Response of the
oscillator to an external perturbation as a function of the
detuning � of the perturbation from the oscillator frequency.
Here  = !r/Q, with Q the oscillator’s quality factor, is the
full width at half maximum (FWHM) of the oscillator response.
Equivalently, 1/ is the average lifetime of the single-photon
state |1i before it decays to |0i. (Inset) Lumped-element LC
oscillator of inductance L and capacitace C.

with �zpf =
p

~/2!rC =
p

~Zr/2 and Qzpf =p
~!rC/2 =

p
~/2Zr the characteristic magnitude of

the zero-point fluctuations of the flux and the charge, re-
spectively. With these definitions, the above Hamiltonian
takes the usual form

ĤLC = ~!r(â
†â + 1/2), (5)

with eigenstates that satisfy â†â|ni = n|ni for n =
0, 1, 2, . . . In the rest of this review, we follow the con-
vention of dropping from the Hamiltonian the factor of
1/2 corresponding to zero-point energy. The action of
â† =

p
1/2~Zr(�̂ � iZrQ̂) is to create a quantized exci-

tation of the flux and charge degrees of freedom of the
oscillator or, equivalently of the magnetic and electric
fields. In other words, â† creates a photon of frequency
!r stored in the circuit.

While formally correct, one can wonder if this quanti-
zation procedure is relevant in practice. In other words,
is it possible to operate LC oscillators in a regime where
quantum e↵ects are important? For this to be the case, at
least two conditions must be satisfied. First, the oscillator
should be su�ciently well decoupled from uncontrolled
degrees of freedom such that its energy levels are consid-
erably less broad than their separation. In other words,
we require the oscillator’s quality factor Q = !r/, with
 the oscillator linewidth or equivalently the photon loss
rate, to be large. An approach to treat the environment
of a quantum system is described in Sec. IV. Because
losses are at the origin of level broadening, superconduc-
tors are ideal to reach the quantum regime. In practice,
most circuit QED devices are made of thin aluminum
films evaporated on low-loss dielectric substrates such as
sapphire or high-resistivity silicon wafers. Mainly for its

10

ference ' is related to the voltage across the junction
according to d'/dt = 2⇡V/�0, with �0 = h/2e the flux
quantum. It is useful to write this expression as '(t) =
2⇡�(t)/�0 (mod 2⇡) = 2⇡

R
dt0 V (t0)/�0 (mod 2⇡), with

�(t) the flux variable already introduced in Sec. II.A.
The mod 2⇡ in the previous equalities takes into account
the fact that the superconducting phase ' is a compact
variable on the unit circle, ' = ' + 2⇡, while � can take
arbitrary real values.

Taken together, the two Josephson relations make it
clear that a Josephson junction relates current I to flux �.
This is akin to a geometric inductance whose constitutive
relation � = LI also links these two quantities. For this
reason, it is useful to define the Josephson inductance

LJ(�) =

✓
@I

@�

◆�1

=
�0

2⇡Ic

1

cos(2⇡�/�0)
. (18)

In contrast to geometric inductances, LJ depends on the
flux. As a result, when operated below the critical current,
the Josephson junction can be thought of as a nonlinear
inductor.

Replacing the geometric inductance L of the LC os-
cillator discussed in Sec. II.A by a Josephson junction,
as in Fig. 5(b), therefore renders the circuit nonlinear.
In this situation, the energy levels of the circuit are no
longer equidistant. If the nonlinearity and the quality
factor of the junction are large enough, the energy spec-
trum resembles that of an atom, with well-resolved and
nonuniformly spread spectral lines. We therefore often
refer to this circuit as an artificial atom (Clarke et al.,
1988). In many situations, and as is the focus of much
of this review, we can furthermore restrict our attention
to only two energy levels, typically the ground and first
excited states, forming a qubit.

To make this discussion more precise, it is useful to see
how the Hamiltonian of the circuit of Fig. 5(b) is modified
by the presence of the Josephson junction taking the place
of the linear inductor. While the energy stored in a linear
inductor is E =

R
dt V (t)I(t) =

R
dt (d�/dt)I = �2/2L,

where we have used � = LI in the last equality, the
energy of the nonlinear inductance rather takes the form

E = Ic

Z
dt

✓
d�

dt

◆
sin

✓
2⇡

�0
�

◆
= �EJ cos

✓
2⇡

�0
�

◆
,

(19)
with EJ = �0Ic/2⇡ the Josephson energy. This quantity
is proportional the rate of tunnelling of Cooper pairs
across the junction. Taking into account this contribution,
the quantized Hamiltonian of the capacitively shunted
Josephson junction therefore reads (see Appendix A)

ĤT =
(Q̂�Qg)2

2C⌃
� EJ cos

✓
2⇡

�0
�̂

◆

= 4EC(n̂� ng)
2 � EJ cos '̂.

(20)

In this expression, C⌃ = CJ +CS is the total capacitance,
including the junction’s capacitance CJ and the shunt

�2 0 2
'

�x

CSEJ

EC

|g

|e
|f

!qV
('

)
(a

rb
.

u
n
it
s)

(a)

(b)

(c)

FIG. 5 (a) Cosine potential well of the transmon qubit (full
line) compared to the quadratic potential of the LC oscillator
(dashed lines). The spectrum of the former as eigenstates
labelled {|gi, |ei, |fi, |hi . . .} and is characterized by an anhar-
monicity �EC . (b) Circuit for the fixed-frequency transmon
qubit. The square with a cross represents a Josephson junction
with Josephson energy EJ and junction capacitance CJ . (c)
By using a SQUID rather than a single junction, the frequency
of the transmon qubit becomes flux tunable.

capacitance CS . In the second line, we have defined the
charge number operator n̂ = Q̂/2e, the phase operator
'̂ = (2⇡/�0)�̂ (mod 2⇡) and the charging energy EC =
e2/2C⌃. We have also included a possible o↵set charge
ng = Qg/2e due to capacitive coupling of the transmon
to external charges. The o↵set charge can arise from
spurious unwanted degrees of freedom in the transmon’s
environment or from an external gate voltage Vg = Qg/Cg.
As we show below, the choice of EJ and EC is crucial in
determining the system’s sensitivity to the o↵set charge.

The spectrum of ĤT is controlled by the ratio EJ/EC ,
with di↵erent values of this ratio corresponding to dif-
ferent types of superconducting qubits; see for example
the reviews (Clarke and Wilhelm, 2008; Kjaergaard et al.,
2019; Makhlin et al., 2001; Zagoskin and Blais, 2007). Re-
gardless of the parameter regime, one can always express
the Hamiltonian in the diagonal form Ĥ =

P
j ~!j |jihj|

in terms of its eigenfrequencies !j and eigenstates |ji.
In the literature, two notations are commonly used to
label these eigenstates: {|gi, |ei, |fi, |hi . . .} and, when
there is not risk of confusion with resonator Fock states,
{|0i, |1i, |2i . . .}. Depending on the context, we will use
both notation in this review. Figure 6 shows the energy
di↵erence !j � !0 for the three lowest energy levels for
di↵erent ratios EJ/EC as obtained from numerical diago-
nalization of Eq. (20). If the charging energy dominates,
EJ/EC < 1, the eigenstates of the Hamiltonian are ap-
proximately given by eigenstates of the charge operator,
|ji ' |ni, with n̂|ni = n|ni. In this situation, a change
in gate charge ng has a large impact on the transition
frequency of the device. As a result, unavoidable charge
fluctuations in the circuit’s environment lead to corre-
sponding fluctuations in the qubit transition frequency

Resonator Transmon

ManipulateMeasure / Read
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the driving Hamiltonian in the rotating frame takes the
form

ÂHd = �V0s(t) (I sin(Êdt) ≠ Q cos(Êdt))
◊ (cos(Êqt)‡y ≠ sin(Êqt)‡x) (89)

Performing the multiplication and dropping fast rotating
terms that will average to zero (i.e. terms with Êq + Êd),
known as the rotating wave approximation (RWA), we
are left with

ÂHd = 1
2�V0s(t)

5
(≠I cos(”Êt) + Q sin(”Êt)) ‡x

+ (I sin(”Êt) ≠ Q cos(”Êt)) ‡y

6
(90)

where ”Ê = Êq ≠ Êd. Finally, by re-using the definitions
from Eq. (86), the driving Hamiltonian in the rotating
frame using the RWA can be written as

ÂHd = ≠
�
2 V0s(t)

3
0 ei(”Êt+„)

e≠i(”Êt+„) 0

4
. (91)

Equation (91) is a powerful tool for understanding single-
qubit gates in superconducting qubits. As a concrete
example, assume that we apply a pulse at the qubit fre-
quency, so that ”Ê = 0, then

ÂHd = ≠
�
2 V0s(t) (I‡x + Q‡y) , (92)

showing that an in-phase pulse („ = 0, i.e. the I-
component) corresponds to rotations around the x-axis,
while an out-of-phase pulse („ = fi/2, i.e. the Q-
component), corresponds to rotations about the y-axis.
As a concrete example of an in-phase pulse, writing out
the unitary operator yields

U„=0
rf,d (t) = exp

35
i

2�V0

⁄
t

0
s(tÕ)dtÕ

6
‡x

4
, (93)

which depends only on the macroscopic design parame-
ters of the circuit as well as the envelope of the baseband
pulse s(t) and amplitude V0, which can both be controlled
using arbitrary waveform generators (AWGs). Equation
(93) is known as Rabi driving and can serve as a use-
ful tool for engineering the circuit parameters needed for
e�cient gate operation (subject to the available output
voltage V0). To see this we define the shorthand

�(t) = ≠�V0

⁄
t

0
s(tÕ)dtÕ (94)

which is the angle by which a state is rotated given the
capacitive couplings, the impedance of the circuit, the
magnitude V0, and the waveform envelope, s(t). This
means that to implement a fi-pulse on the x-axis one
would solve the equation �(t) = fi and output the sig-
nal in-phase with the qubit drive. In this language, a
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FIG. 13. (a) Schematic of a typical qubit drive setup. A mi-
crowave source supplies a high-frequency signal (ÊLO), while
an arbitrary waveform generator (AWG) supplies a pulse-
envelope (s(t)), sometimes with a low frequency component,
ÊAWG, generated by the AWG. The IQ-mixer combines the two
signals to generate a shaped waveform Vd(t) with a frequency
Êd = ÊLO ± ÊAWG, typically resonant with the qubit. (b) Ex-
ample of how a gate sequence is translated into a waveform
generated by the AWG. Colors indicate I and Q components.
(c) The action of a Xfi/2 pulse on a |0Í state to produce the
|≠iÍ = 1Ô

2 (|0Í ≠ i|1Í) state.

sequence of pulses (see Fig. 13(a)) �k, �k≠1, ...�0 is con-
verted to a sequence of gates operating on a qubit as

Uk · · · U1U0 = T

kŸ

n=0
e[≠ i

2
�n(t)(In‡x+Qn‡y)], (95)

where T is an operator that ensures the pulses are gen-
erated in the time-ordered sequence corresponding to
Uk · · · U1U0.

In Fig. 13 we outline the typical IQ modulation setup
used to generate the pulses used in Eq. (95). Fig. 13(a)
shows how a pulse at frequency Êd is generated using a
low phase-noise microwave generator (typically denoted
‘the local oscillator (LO)’), while the pulse is shaped by
combining the LO signal in an IQ mixer with pulses gen-
erated in an AWG. To allow for frequency multiplexing,
the AWG signal will typically be generated with a low-
frequency component, ÊAWG, and the LO signal will be
o�set, so that ÊLO+ÊAWG = Êd. By mixing in more than
one frequency ÊAWG1, ÊAWG2, ... it is possible to address
multiple qubits (or readout resonators) simultaneously,
via the superposition of individual drives.

The I (Q) input of the IQ mixer will multiply the base-
band signal to the in-phase (out-of-phase) component of
the LO. In Fig. 13(b) we schematically show the com-
parison between XY gates in a quantum circuit and the
corresponding waveforms generated in the AWG (omit-
ting for clarity the frequency ÊAWG component). The
inset in Fig. 13(b) shows an example of a gate on the
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jφð~θÞi≡Uð~θÞjϕi. Even if jϕi is a simple product state and
Uð~θÞ is a very shallow circuit, jφð~θÞi can contain complex
many-body correlations and span an exponential number of
standard basis states.
We can express the mapping Uð~θÞ as a concatenation

of parametrized quantum gates, U1ðθ1ÞU2ðθ2Þ…UnðθnÞ.
In this work, we parametrize our circuit according to
unitary coupled cluster theory [20,22,23]. As described
in Appendix D, unitary coupled cluster theory predicts that
the ground state of Eq. (1) can be expressed as

jφðθÞi ¼ e−iθX0Y1 j01i; ð3Þ

where jϕi ¼ j01i is the Hartree-Fock (mean-field) state
of molecular hydrogen in the representation of Eq. (1).
As discussed in Appendix D, unitary coupled cluster
theory is widely believed to be classically intractable and
is known to be strictly more powerful than the “gold
standard” of classical electronic structure theory, coupled
cluster theory [43–46]. The gate model circuit that
performs this unitary mapping is shown in the software
section of Fig. 1.
VQE solves for the parameter vector ~θ with a classical

optimization routine. One first prepares an initial ansatz
jφð~θ0Þi and then estimates the ansatz energy Eð~θ0Þ by
measuring the expectation values of each term in Eq. (1)
and summing these values together as

Eð~θÞ ¼
X

γ

gγhφð~θÞjHγjφð~θÞi; ð4Þ

where the gγ are scalars and the Hγ are local Hamiltonians

as in Eq. (1). The initial guess ~θ0 and the corresponding
objective value Eð~θ0Þ are then fed to a classical greedy
minimization routine (e.g., gradient descent), which then
suggests a new setting of the parameters ~θ1. The energy
Eð~θ1Þ is then measured and returned to the classical outer
loop. This continues for m iterations until the energy
converges to a minimum value Eð~θmÞ, which represents
the VQE approximation to E0.
Because our experiment requires only a single varia-

tional parameter, as in Eq. (3), we elect to scan 1000
different values of θ ∈ ½−π; πÞ in order to obtain expect-
ation values that define the entire potential energy curve.
We do this to simplify the classical feedback routine but at
the cost of needing slightly more experimental trials. These
expectation values are shown in Fig. 2(a) and the corre-
sponding energy surfaces at different bond lengths are
shown in Fig. 2(b). The energy surface in Fig. 2(b) is
locally optimized at each bond length to emulate an on-the-
fly implementation.
Figure 3(a) shows the exact and experimentally deter-

mined energies of molecular hydrogen at different bond
lengths. The minimum energy bond length (R ¼ 0.72 Å)
corresponds to the equilibrium bond length, whereas the
asymptote on the right-hand part of the curve corresponds
to dissociation into two hydrogen atoms. The energy
difference between these points is the dissociation energy,
and the exponential of this quantity determines the chemi-
cal dissociation rate. Our VQE experiment correctly pre-
dicts this quantity with an error of ð8% 5Þ × 10−4 hartree,
which is below the chemical accuracy threshold. Error bars

FIG. 1. Hardware and software schematic of the variational quantum eigensolver. (Hardware) micrograph shows two Xmon transmon
qubits and microwave pulse sequences to perform single-qubit rotations (thick lines), dc pulses for two-qubit entangling gates (dashed
lines), and microwave spectroscopy tones for qubit measurements (thin lines). (Software) quantum circuit diagram shows preparation of
the Hartree-Fock state, followed by application of the unitary coupled cluster ansatz in Eq. (3) and efficient partial tomography (Rt) to
measure the expectation values in Eq. (1). Finally, the total energy is computed according to Eq. (4) and provided to a classical optimizer
which suggests new parameters.

SCALABLE QUANTUM SIMULATION OF MOLECULAR ENERGIES PHYS. REV. X 6, 031007 (2016)

031007-3
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Uð~θÞ is a very shallow circuit, jφð~θÞi can contain complex
many-body correlations and span an exponential number of
standard basis states.
We can express the mapping Uð~θÞ as a concatenation

of parametrized quantum gates, U1ðθ1ÞU2ðθ2Þ…UnðθnÞ.
In this work, we parametrize our circuit according to
unitary coupled cluster theory [20,22,23]. As described
in Appendix D, unitary coupled cluster theory predicts that
the ground state of Eq. (1) can be expressed as

jφðθÞi ¼ e−iθX0Y1 j01i; ð3Þ

where jϕi ¼ j01i is the Hartree-Fock (mean-field) state
of molecular hydrogen in the representation of Eq. (1).
As discussed in Appendix D, unitary coupled cluster
theory is widely believed to be classically intractable and
is known to be strictly more powerful than the “gold
standard” of classical electronic structure theory, coupled
cluster theory [43–46]. The gate model circuit that
performs this unitary mapping is shown in the software
section of Fig. 1.
VQE solves for the parameter vector ~θ with a classical
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jφð~θ0Þi and then estimates the ansatz energy Eð~θ0Þ by
measuring the expectation values of each term in Eq. (1)
and summing these values together as

Eð~θÞ ¼
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where the gγ are scalars and the Hγ are local Hamiltonians

as in Eq. (1). The initial guess ~θ0 and the corresponding
objective value Eð~θ0Þ are then fed to a classical greedy
minimization routine (e.g., gradient descent), which then
suggests a new setting of the parameters ~θ1. The energy
Eð~θ1Þ is then measured and returned to the classical outer
loop. This continues for m iterations until the energy
converges to a minimum value Eð~θmÞ, which represents
the VQE approximation to E0.
Because our experiment requires only a single varia-

tional parameter, as in Eq. (3), we elect to scan 1000
different values of θ ∈ ½−π; πÞ in order to obtain expect-
ation values that define the entire potential energy curve.
We do this to simplify the classical feedback routine but at
the cost of needing slightly more experimental trials. These
expectation values are shown in Fig. 2(a) and the corre-
sponding energy surfaces at different bond lengths are
shown in Fig. 2(b). The energy surface in Fig. 2(b) is
locally optimized at each bond length to emulate an on-the-
fly implementation.
Figure 3(a) shows the exact and experimentally deter-

mined energies of molecular hydrogen at different bond
lengths. The minimum energy bond length (R ¼ 0.72 Å)
corresponds to the equilibrium bond length, whereas the
asymptote on the right-hand part of the curve corresponds
to dissociation into two hydrogen atoms. The energy
difference between these points is the dissociation energy,
and the exponential of this quantity determines the chemi-
cal dissociation rate. Our VQE experiment correctly pre-
dicts this quantity with an error of ð8% 5Þ × 10−4 hartree,
which is below the chemical accuracy threshold. Error bars

FIG. 1. Hardware and software schematic of the variational quantum eigensolver. (Hardware) micrograph shows two Xmon transmon
qubits and microwave pulse sequences to perform single-qubit rotations (thick lines), dc pulses for two-qubit entangling gates (dashed
lines), and microwave spectroscopy tones for qubit measurements (thin lines). (Software) quantum circuit diagram shows preparation of
the Hartree-Fock state, followed by application of the unitary coupled cluster ansatz in Eq. (3) and efficient partial tomography (Rt) to
measure the expectation values in Eq. (1). Finally, the total energy is computed according to Eq. (4) and provided to a classical optimizer
which suggests new parameters.
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the VQE approximation to E0.
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FIG. 1. Hardware and software schematic of the variational quantum eigensolver. (Hardware) micrograph shows two Xmon transmon
qubits and microwave pulse sequences to perform single-qubit rotations (thick lines), dc pulses for two-qubit entangling gates (dashed
lines), and microwave spectroscopy tones for qubit measurements (thin lines). (Software) quantum circuit diagram shows preparation of
the Hartree-Fock state, followed by application of the unitary coupled cluster ansatz in Eq. (3) and efficient partial tomography (Rt) to
measure the expectation values in Eq. (1). Finally, the total energy is computed according to Eq. (4) and provided to a classical optimizer
which suggests new parameters.
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Qubit Calibration

Frequency-Domain: 

Resonator Spectroscopy 

Two-Tone Spectroscopy 

Time-Domain: 

Rabi Measurement 

Characterization: 

T1: Relaxation Time 

T2*: Dephasing Time



Resonator Spectroscopy

A Resonator is a device defined by its resonance 
frequency, it filter the signals that don’t resonate 
with it.

Objective: Find the resonance frequency

How? 

- Sweep a the frequency sent to the resonator. 

- Measure the resonator response. 

- The peak represents the resonance frequency.

13

of superconducting artificial atoms are used in the con-
text of circuit QED. In addition to working with di↵erent
ratios of EJ/EC , these other qubits vary in the number
of Josephson junctions and the topology of the circuit
in which these junctions are embedded. This includes
charge qubits (Bouchiat et al., 1998; Nakamura et al.,
1999; Shnirman et al., 1997), flux qubits (Mooij et al.,
1999; Orlando et al., 1999) including variations with a
large shunting capacitance (Yan et al., 2016; You et al.,
2007), phase qubits (Martinis et al., 2002), the quantro-
nium (Vion et al., 2002b), the fluxonium (Manucharyan
et al., 2009) and the 0�⇡ qubit (Brooks et al., 2013; Gye-
nis et al., 2019), amongst others. For more details about
these di↵erent qubits, the reader is referred to reviews on
the topic (Clarke and Wilhelm, 2008; Kjaergaard et al.,
2019; Krantz et al., 2019; Makhlin et al., 2001; Zagoskin
and Blais, 2007).

III. LIGHT-MATTER INTERACTION IN CIRCUIT QED

A. Exchange interaction between a transmon and an
oscillator

Having introduced the two main characters of this re-
view, the quantum harmonic oscillator and the transmon
artificial atom, we are now ready to consider their in-
teraction. Because of their large size coming from the
requirement of having a low charging energy (large capaci-
tance), transmon qubits can very naturally be capacitively
coupled to microwave resonators, see Fig. 7 for schematic
representations. With the resonator taking the place of
the classical voltage source Vg, capacitive coupling to a
resonator can be introduced in the transmon Hamilto-
nian Eq. (20) with a quantized gate voltage ng ! �n̂r,
representing the charge bias of the transmon due to the
resonator (the choice of sign is simply a common con-
vention in the literature that we will adopt here, see
Appendix A). The Hamiltonian of the combined system
is therefore (Blais et al., 2004)

Ĥ = 4EC(n̂ + n̂r)
2 � EJ cos '̂�

X

m

~!mâ†mâm, (29)

where n̂r =
P

m n̂m with n̂m = (Cg/Cm)Q̂m/2e the con-
tribution to the charge bias due to the mth resonator
mode. Here, Cg is the gate capacitance and Cm the as-
sociated resonator mode capacitance. To simplify these
expressions, we have assumed here that Cg ⌧ C⌃, Cm.
A derivation of the Hamiltonian of Eq. (29) that goes
beyond the simple replacement of ng by �n̂r and without
the above assumption can be found in Appendix A for
the case of a single LC oscillator coupled to the transmon.

Assuming that the transmon frequency is much closer
to one of the resonator modes than all the other modes,
say |!0 � !q| ⌧ |!m � !q| for m � 1, we truncate the

(b) (c)

�/4

E

Cg

(a)

⇠ 300
µm

d ⇠
1 cm

FIG. 7 Schematic representation of a transmon qubit (green)
coupled to (a) a 1D transmission-line resonator, (b) a lumped-
element LC circuit and (c) a 3D coaxial cavity. Panel (a) is
adapted from Blais et al. (2004) and panel (c) from Reagor
et al. (2016).

sum over m in Eq. (29) to a single term. In this single-
mode approximation, the Hamiltonian reduces to a single
oscillator of frequency denoted !r coupled to a transmon.
It is interesting to note that, regardless of the physical
nature of the oscillator—for example a single mode of a
2D or 3D resonator—it is possible to represent this Hamil-
tonian with an equivalent circuit where the transmon is
capacitively coupled to an LC oscillator as illustrated in
Fig. 7(b). This type of formal representation of complex
geometries in terms of equivalent lumped element circuits
is generally known as “black-box quantization” (Nigg
et al., 2012), and is explored in more detail in Sec. III.D.
As will be discussed in Sec. IV.E, there are many situations
of experimental relevance where ignoring the multi-mode
nature of the resonator leads to inaccurate predictions.

Using the creation and annihilation operators intro-
duced in the previous section, in the single-mode approxi-
mation Eq. (29) reduces to 3

Ĥ ⇡ ~!râ
†â + ~!q b̂

†b̂� EC

2
b̂†b̂†b̂b̂

� ~g(b̂† � b̂)(â† � â),
(30)

3 One might worry about the term n̂
2
r arising from Eq. (29). How-

ever, this term can be absorbed in the charging energy term of
the resonator mode, see Eq. (1), and therefore leads to a renor-
malization of the resonator frequency which we omit here for
simplicity. See Eqs. (A9) and (A10) for further details.



Two-Tone Spectroscopy

Due to the coupling between the qubit and the 
resonator, the resonator frequency shifts based 
on the qubit state.

Objective: Find the qubit frequency (Roughly)

How? 

- Sweep a the frequency sent to the qubit. 

- Measure the resonator response. 

- A peak shift indicate qubit transition.

13

of superconducting artificial atoms are used in the con-
text of circuit QED. In addition to working with di↵erent
ratios of EJ/EC , these other qubits vary in the number
of Josephson junctions and the topology of the circuit
in which these junctions are embedded. This includes
charge qubits (Bouchiat et al., 1998; Nakamura et al.,
1999; Shnirman et al., 1997), flux qubits (Mooij et al.,
1999; Orlando et al., 1999) including variations with a
large shunting capacitance (Yan et al., 2016; You et al.,
2007), phase qubits (Martinis et al., 2002), the quantro-
nium (Vion et al., 2002b), the fluxonium (Manucharyan
et al., 2009) and the 0�⇡ qubit (Brooks et al., 2013; Gye-
nis et al., 2019), amongst others. For more details about
these di↵erent qubits, the reader is referred to reviews on
the topic (Clarke and Wilhelm, 2008; Kjaergaard et al.,
2019; Krantz et al., 2019; Makhlin et al., 2001; Zagoskin
and Blais, 2007).

III. LIGHT-MATTER INTERACTION IN CIRCUIT QED

A. Exchange interaction between a transmon and an
oscillator

Having introduced the two main characters of this re-
view, the quantum harmonic oscillator and the transmon
artificial atom, we are now ready to consider their in-
teraction. Because of their large size coming from the
requirement of having a low charging energy (large capaci-
tance), transmon qubits can very naturally be capacitively
coupled to microwave resonators, see Fig. 7 for schematic
representations. With the resonator taking the place of
the classical voltage source Vg, capacitive coupling to a
resonator can be introduced in the transmon Hamilto-
nian Eq. (20) with a quantized gate voltage ng ! �n̂r,
representing the charge bias of the transmon due to the
resonator (the choice of sign is simply a common con-
vention in the literature that we will adopt here, see
Appendix A). The Hamiltonian of the combined system
is therefore (Blais et al., 2004)

Ĥ = 4EC(n̂ + n̂r)
2 � EJ cos '̂�

X

m

~!mâ†mâm, (29)

where n̂r =
P

m n̂m with n̂m = (Cg/Cm)Q̂m/2e the con-
tribution to the charge bias due to the mth resonator
mode. Here, Cg is the gate capacitance and Cm the as-
sociated resonator mode capacitance. To simplify these
expressions, we have assumed here that Cg ⌧ C⌃, Cm.
A derivation of the Hamiltonian of Eq. (29) that goes
beyond the simple replacement of ng by �n̂r and without
the above assumption can be found in Appendix A for
the case of a single LC oscillator coupled to the transmon.

Assuming that the transmon frequency is much closer
to one of the resonator modes than all the other modes,
say |!0 � !q| ⌧ |!m � !q| for m � 1, we truncate the
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FIG. 7 Schematic representation of a transmon qubit (green)
coupled to (a) a 1D transmission-line resonator, (b) a lumped-
element LC circuit and (c) a 3D coaxial cavity. Panel (a) is
adapted from Blais et al. (2004) and panel (c) from Reagor
et al. (2016).

sum over m in Eq. (29) to a single term. In this single-
mode approximation, the Hamiltonian reduces to a single
oscillator of frequency denoted !r coupled to a transmon.
It is interesting to note that, regardless of the physical
nature of the oscillator—for example a single mode of a
2D or 3D resonator—it is possible to represent this Hamil-
tonian with an equivalent circuit where the transmon is
capacitively coupled to an LC oscillator as illustrated in
Fig. 7(b). This type of formal representation of complex
geometries in terms of equivalent lumped element circuits
is generally known as “black-box quantization” (Nigg
et al., 2012), and is explored in more detail in Sec. III.D.
As will be discussed in Sec. IV.E, there are many situations
of experimental relevance where ignoring the multi-mode
nature of the resonator leads to inaccurate predictions.

Using the creation and annihilation operators intro-
duced in the previous section, in the single-mode approxi-
mation Eq. (29) reduces to 3

Ĥ ⇡ ~!râ
†â + ~!q b̂

†b̂� EC

2
b̂†b̂†b̂b̂

� ~g(b̂† � b̂)(â† � â),
(30)

3 One might worry about the term n̂
2
r arising from Eq. (29). How-

ever, this term can be absorbed in the charging energy term of
the resonator mode, see Eq. (1), and therefore leads to a renor-
malization of the resonator frequency which we omit here for
simplicity. See Eqs. (A9) and (A10) for further details.
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Ĥ = 4EC(n̂ + n̂r)
2 � EJ cos '̂�

X

m
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nature of the oscillator—for example a single mode of a
2D or 3D resonator—it is possible to represent this Hamil-
tonian with an equivalent circuit where the transmon is
capacitively coupled to an LC oscillator as illustrated in
Fig. 7(b). This type of formal representation of complex
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is generally known as “black-box quantization” (Nigg
et al., 2012), and is explored in more detail in Sec. III.D.
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gates. Qubit characterization involves measuring the resonant
frequency and coherence times (i.e., how long a qubit behaves
quantum mechanically) of the qubit. These properties are im-
portant for calibrating the quantum gates used in algorithms.
For example, the coherence times of a qubit place fundamen-
tal limits on the fidelity of quantum gates or measurements
performed on that qubit, and additionally informs the end user
of the circuit depth with which one can perform useful compu-
tations with that qubit. Moreover, many quantum gates require
coherently driving qubits on-resonance; therefore, it is neces-
sary to characterize qubit frequencies to high accuracy. In this
section, we review standard methods for characterizing basic
qubit properties and discuss how they can be utilized for mea-
suring errors in quantum gates to high precision:

1. Frequency-domain Spectroscopy (Sec. VI A). The first
step in probing a quantum system is to find its transition
frequencies. To achieve this, one can irradiate a driv-
ing field on the qubit and sweep its frequency across a
broad range. As the drive induces the qubit’s transitions
when it is swept across the corresponding resonant fre-
quencies, the subsequent measurement of the qubit then
reveals its energy spectrum.

2. Rabi Oscillations (Sec. VI B). A fundamental test of
qubit control is to perform Rabi oscillations, whereby
a qubit is coherently driven on-resonance between its
ground and excited states. Measurement of the qubit af-
ter a varied drive duration reveals an oscillation pattern
characteristic of a two-level quantum system.

3. Time-domain Spectroscopy (Sec. VI C). The coherent
control of a qubit requires driving it at its resonant fre-
quency. Therefore, accurately finding qubit frequen-
cies is an important step in the calibration of quan-
tum gates. We review two methods for characterizing
qubit frequencies in the time domain, including Ram-
sey spectroscopy, a standard interferometric experiment
that is used throughout atomic, molecular, and optical,
and solid state physics.

4. Qubit Coherence (Sec. VI D). The coherence times of
a qubit are characterized by two timescales: (1) ther-
malization (or energy relaxation), which quantifies how
long a qubit will remain excited before decaying to the
ground state; and (2) phase relaxation, which quantifies
how long a qubit in a superposition state will maintain
phase coherence. Measuring these two properties can
be accomplished with simple Rabi and Ramsey experi-
ments.

5. Phase Estimation (Sec. VI E). Standard Rabi and Ram-
sey experiments are typically performed in a continuous

Figure 8: Frequency-domain Spectroscopy. By sweeping the fre-
quency of a microwave tone driving a transmon qubit and monitoring
the readout signal, we can detect the transitions of the qubit from its
initial states, |ω→ini = |0→ (solid blue line) and |ω→ini = |1→ (dashed green
line). The observed dips indicate the resonant frequencies, which cor-
respond to the |0→ ↑ |1→ and |1→ ↑ |2→ transitions. (The data are re-
produced with permission from Ref. [213].)

manner (see, e.g., Fig. 9). However, in a gate-based set-
ting, one can instead perform discrete Rabi and Ramsey
experiments which are constructed out of a set of de-
fined quantum logic gates. This is the basis for a class
of methods known as phase estimation, which can be
used to perform precision measurements of small errors
in the rotation angles of quantum gates.

A. Frequency-domain Spectroscopy

Measuring the energy spectrum of a qubit is a foundational
step in quantum characterization. Coarse measurements of
qubit transition frequencies can be characterized using stan-
dard laboratory spectroscopy methods, such as absorption
spectroscopy [214]. When driven on-resonant using an exter-
nal electromagnetic field (e.g., optical laser, microwave sig-
nal, etc.), the qubit will absorb some energy from the radiation
field and undergo a transition from its initial state, resulting in
a change in the measurement signal. Otherwise, the signal re-
mains constant up to the noise level. Therefore, by sweeping
the frequency of the external field and monitoring the reflected
or transmitted signal, we can detect the transition frequency of
the qubit. For example, Fig. 8 shows the transition spectrum
from the |0→ and |1→ states of a superconducting transmon qubit.

If the qubit is continuously driven across a wide range of fre-
quencies during the measurement, the technique is broadly re-
ferred to as continuous-wave (CW) spectroscopy. To mitigate
spurious and higher-order effects from multi-photon processes,
the qubit drive may be deactivated during the measurement
phase, which is then termed pulsed spectroscopy. Together,
these techniques are often called frequency-domain spec-
troscopy. While the broad linewidths found using frequency-
domain spectroscopy typically provide sufficient frequency
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Figure 3.19: Rabi measurement: The sequence for the measurement of Rabi oscillations and the typical

room temperature circuitry are shown.

shift to readout the state of the qubit. Figure 3.20 shows a typical Rabi oscillation. The

reason we use a rather short Rabi time (100-200 ns) for Rabi measurement is because we

will use this Rabi sequence to calibrate preparation pulses (⇡-pulse and ⇡/2-pulse) which

are normally short pulses1. In this step, we may also tweak the readout power, frequency,

and phase to maximize the oscillation contrast as depicted in Figure 3.20a.

In order to calibrate ⇡-pulses, we first need to make sure that the qubit frequency is

accurate and oscillations are on-resonance with the qubit. One way to check this is to sweep

the qubit frequency while performing Rabi oscillation measurements. The resulting 2D color

plot is called “chevron plot”. By fitting a sine-wave to the oscillations, one can find the best

estimate of the minimum oscillation frequency which is the qubit frequency2. Later we will

see that with Ramsey measurement we can have a better estimation of the qubit frequency.

1Moreover it is wise to start o↵ by a short sequence for the experiment because we might have a qubit
with short decoherence times or there might be some calibration issue in the system which could make it
hard to see the qubit evolution at longer qubit evolution times.

2Rabi spectroscopy is not super sensitive to the detuning in the regime of fast Rabi oscillation. Moreover,
one might think that with a stronger drive we might also stark shift the qubit. So, one would think in order to
find qubit frequency it is better to have longer Rabi sequence and slower Rabi oscillation to improve precision.
But since our main concern is ⇡-pulse calibration, it makes sense to do Rabi spectroscopy (chevron plot)
with actual power that we are going to use for the ⇡-pulses.
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1Moreover it is wise to start o↵ by a short sequence for the experiment because we might have a qubit
with short decoherence times or there might be some calibration issue in the system which could make it
hard to see the qubit evolution at longer qubit evolution times.

2Rabi spectroscopy is not super sensitive to the detuning in the regime of fast Rabi oscillation. Moreover,
one might think that with a stronger drive we might also stark shift the qubit. So, one would think in order to
find qubit frequency it is better to have longer Rabi sequence and slower Rabi oscillation to improve precision.
But since our main concern is ⇡-pulse calibration, it makes sense to do Rabi spectroscopy (chevron plot)
with actual power that we are going to use for the ⇡-pulses.
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Figure 3.19: Rabi measurement: The sequence for the measurement of Rabi oscillations and the typical

room temperature circuitry are shown.

shift to readout the state of the qubit. Figure 3.20 shows a typical Rabi oscillation. The

reason we use a rather short Rabi time (100-200 ns) for Rabi measurement is because we

will use this Rabi sequence to calibrate preparation pulses (⇡-pulse and ⇡/2-pulse) which

are normally short pulses1. In this step, we may also tweak the readout power, frequency,

and phase to maximize the oscillation contrast as depicted in Figure 3.20a.

In order to calibrate ⇡-pulses, we first need to make sure that the qubit frequency is

accurate and oscillations are on-resonance with the qubit. One way to check this is to sweep

the qubit frequency while performing Rabi oscillation measurements. The resulting 2D color

plot is called “chevron plot”. By fitting a sine-wave to the oscillations, one can find the best

estimate of the minimum oscillation frequency which is the qubit frequency2. Later we will

see that with Ramsey measurement we can have a better estimation of the qubit frequency.

1Moreover it is wise to start o↵ by a short sequence for the experiment because we might have a qubit
with short decoherence times or there might be some calibration issue in the system which could make it
hard to see the qubit evolution at longer qubit evolution times.

2Rabi spectroscopy is not super sensitive to the detuning in the regime of fast Rabi oscillation. Moreover,
one might think that with a stronger drive we might also stark shift the qubit. So, one would think in order to
find qubit frequency it is better to have longer Rabi sequence and slower Rabi oscillation to improve precision.
But since our main concern is ⇡-pulse calibration, it makes sense to do Rabi spectroscopy (chevron plot)
with actual power that we are going to use for the ⇡-pulses.
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shift to readout the state of the qubit. Figure 3.20 shows a typical Rabi oscillation. The

reason we use a rather short Rabi time (100-200 ns) for Rabi measurement is because we

will use this Rabi sequence to calibrate preparation pulses (⇡-pulse and ⇡/2-pulse) which

are normally short pulses1. In this step, we may also tweak the readout power, frequency,

and phase to maximize the oscillation contrast as depicted in Figure 3.20a.

In order to calibrate ⇡-pulses, we first need to make sure that the qubit frequency is

accurate and oscillations are on-resonance with the qubit. One way to check this is to sweep

the qubit frequency while performing Rabi oscillation measurements. The resulting 2D color

plot is called “chevron plot”. By fitting a sine-wave to the oscillations, one can find the best

estimate of the minimum oscillation frequency which is the qubit frequency2. Later we will

see that with Ramsey measurement we can have a better estimation of the qubit frequency.

1Moreover it is wise to start o↵ by a short sequence for the experiment because we might have a qubit
with short decoherence times or there might be some calibration issue in the system which could make it
hard to see the qubit evolution at longer qubit evolution times.

2Rabi spectroscopy is not super sensitive to the detuning in the regime of fast Rabi oscillation. Moreover,
one might think that with a stronger drive we might also stark shift the qubit. So, one would think in order to
find qubit frequency it is better to have longer Rabi sequence and slower Rabi oscillation to improve precision.
But since our main concern is ⇡-pulse calibration, it makes sense to do Rabi spectroscopy (chevron plot)
with actual power that we are going to use for the ⇡-pulses.
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shift to readout the state of the qubit. Figure 3.20 shows a typical Rabi oscillation. The

reason we use a rather short Rabi time (100-200 ns) for Rabi measurement is because we

will use this Rabi sequence to calibrate preparation pulses (⇡-pulse and ⇡/2-pulse) which

are normally short pulses
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. In this step, we may also tweak the readout power, frequency,

and phase to maximize the oscillation contrast as depicted in Figure 3.20a.

In order to calibrate ⇡-pulses, we first need to make sure that the qubit frequency is

accurate and oscillations are on-resonance with the qubit. One way to check this is to sweep

the qubit frequency while performing Rabi oscillation measurements. The resulting 2D color

plot is called “chevron plot”. By fitting a sine-wave to the oscillations, one can find the best

estimate of the minimum oscillation frequency which is the qubit frequency
2
. Later we will

see that with Ramsey measurement we can have a better estimation of the qubit frequency.

1Moreover it is wise to start o↵ by a short sequence for the experiment because we might have a qubit
with short decoherence times or there might be some calibration issue in the system which could make it
hard to see the qubit evolution at longer qubit evolution times.

2Rabi spectroscopy is not super sensitive to the detuning in the regime of fast Rabi oscillation. Moreover,
one might think that with a stronger drive we might also stark shift the qubit. So, one would think in order to
find qubit frequency it is better to have longer Rabi sequence and slower Rabi oscillation to improve precision.
But since our main concern is ⇡-pulse calibration, it makes sense to do Rabi spectroscopy (chevron plot)
with actual power that we are going to use for the ⇡-pulses.
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Figure 3.19: Rabi measurement: The sequence for the measurement of Rabi oscillations and the typical

room temperature circuitry are shown.

shift to readout the state of the qubit. Figure 3.20 shows a typical Rabi oscillation. The

reason we use a rather short Rabi time (100-200 ns) for Rabi measurement is because we

will use this Rabi sequence to calibrate preparation pulses (⇡-pulse and ⇡/2-pulse) which

are normally short pulses1. In this step, we may also tweak the readout power, frequency,

and phase to maximize the oscillation contrast as depicted in Figure 3.20a.

In order to calibrate ⇡-pulses, we first need to make sure that the qubit frequency is

accurate and oscillations are on-resonance with the qubit. One way to check this is to sweep

the qubit frequency while performing Rabi oscillation measurements. The resulting 2D color

plot is called “chevron plot”. By fitting a sine-wave to the oscillations, one can find the best

estimate of the minimum oscillation frequency which is the qubit frequency2. Later we will

see that with Ramsey measurement we can have a better estimation of the qubit frequency.

1Moreover it is wise to start o↵ by a short sequence for the experiment because we might have a qubit
with short decoherence times or there might be some calibration issue in the system which could make it
hard to see the qubit evolution at longer qubit evolution times.

2Rabi spectroscopy is not super sensitive to the detuning in the regime of fast Rabi oscillation. Moreover,
one might think that with a stronger drive we might also stark shift the qubit. So, one would think in order to
find qubit frequency it is better to have longer Rabi sequence and slower Rabi oscillation to improve precision.
But since our main concern is ⇡-pulse calibration, it makes sense to do Rabi spectroscopy (chevron plot)
with actual power that we are going to use for the ⇡-pulses.
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Figure 3.20: Chevron plot: a, A typical result of Rabi oscillation measurements. b, By repeating

the Rabi measurement for di↵erent qubit frequencies we obtain the “chevron plot” which can be used to

calibrate the qubit frequency. c, The Rabi oscillation frequency versus qubit pulse frequency. As we discussed

in Chapter 2, the minimum oscillation rate corresponds to the maximum contrast for Rabi oscillations which

happens when the qubit pulse is on-resonance with qubit frequency.

After doing this calibration, we know the power, frequency and the duration for ⇡-pulse and

⇡/2-pulse.

3.3.5 T1 Measurement

One of the main characteristics of a qubit is its relaxation time. In order to measure the

lifetime of the qubit we do the following sequence: 1) We prepare the qubit in the excited

state by sending a ⇡-pulse to the qubit. 2) We wait for time t, then 3) we measure the qubit

state by sending readout pulse to the cavity. Therefore we use the same setup that we had

in for Rabi oscillation measurements (see Figure 3.19 for schematics) but we use a slightly

di↵erent sequence from the AWG. Figure 3.21 summarizes the sequence and a result we get

from a T1 measurement.

3.3.6 Ramsey Measurement (T ⇤
2 )

With Ramsey measurement, we characterize the dephasing time for the qubit, T
⇤
2 . For

that, again we use the same setup as we had for measurements of Rabi oscillations (see

Figure 3.19). The Ramsey sequence follows as: 1) prepare the qubit in superposition state

1/
p
2(|gi + i|ei) by applying a ⇡/2-pulse to the qubit. 2) Wait for a time, then t 3) apply

another ⇡/2-pulse to bring back the qubit to ground state1 and immediately 4) perform

readout. The sequence for Ramsey measurement and the result has been shown in fig 3.22.

1If the last ⇡/2-pulse has the same phase as the first ⇡/2-pulse we will put the qubit in the excited state.
If we do negative pulse (opposite rotation) we bring the qubit back to ground state. Either way is fine, all
we need is to bring the qubit to an eigenstate.
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Figure 3.20: Chevron plot: a, A typical result of Rabi oscillation measurements. b, By repeating

the Rabi measurement for di↵erent qubit frequencies we obtain the “chevron plot” which can be used to

calibrate the qubit frequency. c, The Rabi oscillation frequency versus qubit pulse frequency. As we discussed

in Chapter 2, the minimum oscillation rate corresponds to the maximum contrast for Rabi oscillations which

happens when the qubit pulse is on-resonance with qubit frequency.

After doing this calibration, we know the power, frequency and the duration for ⇡-pulse and

⇡/2-pulse.

3.3.5 T1 Measurement

One of the main characteristics of a qubit is its relaxation time. In order to measure the

lifetime of the qubit we do the following sequence: 1) We prepare the qubit in the excited

state by sending a ⇡-pulse to the qubit. 2) We wait for time t, then 3) we measure the qubit

state by sending readout pulse to the cavity. Therefore we use the same setup that we had

in for Rabi oscillation measurements (see Figure 3.19 for schematics) but we use a slightly

di↵erent sequence from the AWG. Figure 3.21 summarizes the sequence and a result we get

from a T1 measurement.

3.3.6 Ramsey Measurement (T ⇤
2 )

With Ramsey measurement, we characterize the dephasing time for the qubit, T
⇤
2 . For

that, again we use the same setup as we had for measurements of Rabi oscillations (see

Figure 3.19). The Ramsey sequence follows as: 1) prepare the qubit in superposition state

1/
p
2(|gi + i|ei) by applying a ⇡/2-pulse to the qubit. 2) Wait for a time, then t 3) apply

another ⇡/2-pulse to bring back the qubit to ground state1 and immediately 4) perform

readout. The sequence for Ramsey measurement and the result has been shown in fig 3.22.

1If the last ⇡/2-pulse has the same phase as the first ⇡/2-pulse we will put the qubit in the excited state.
If we do negative pulse (opposite rotation) we bring the qubit back to ground state. Either way is fine, all
we need is to bring the qubit to an eigenstate.
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Figure 3.20: Chevron plot: a, A typical result of Rabi oscillation measurements. b, By repeating

the Rabi measurement for di↵erent qubit frequencies we obtain the “chevron plot” which can be used to

calibrate the qubit frequency. c, The Rabi oscillation frequency versus qubit pulse frequency. As we discussed

in Chapter 2, the minimum oscillation rate corresponds to the maximum contrast for Rabi oscillations which

happens when the qubit pulse is on-resonance with qubit frequency.

After doing this calibration, we know the power, frequency and the duration for ⇡-pulse and

⇡/2-pulse.

3.3.5 T1 Measurement

One of the main characteristics of a qubit is its relaxation time. In order to measure the

lifetime of the qubit we do the following sequence: 1) We prepare the qubit in the excited

state by sending a ⇡-pulse to the qubit. 2) We wait for time t, then 3) we measure the qubit

state by sending readout pulse to the cavity. Therefore we use the same setup that we had

in for Rabi oscillation measurements (see Figure 3.19 for schematics) but we use a slightly

di↵erent sequence from the AWG. Figure 3.21 summarizes the sequence and a result we get

from a T1 measurement.

3.3.6 Ramsey Measurement (T ⇤
2 )

With Ramsey measurement, we characterize the dephasing time for the qubit, T
⇤
2 . For

that, again we use the same setup as we had for measurements of Rabi oscillations (see

Figure 3.19). The Ramsey sequence follows as: 1) prepare the qubit in superposition state

1/
p
2(|gi + i|ei) by applying a ⇡/2-pulse to the qubit. 2) Wait for a time, then t 3) apply

another ⇡/2-pulse to bring back the qubit to ground state1 and immediately 4) perform

readout. The sequence for Ramsey measurement and the result has been shown in fig 3.22.

1If the last ⇡/2-pulse has the same phase as the first ⇡/2-pulse we will put the qubit in the excited state.
If we do negative pulse (opposite rotation) we bring the qubit back to ground state. Either way is fine, all
we need is to bring the qubit to an eigenstate.
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Figure 3.20: Chevron plot: a, A typical result of Rabi oscillation measurements. b, By repeating

the Rabi measurement for di↵erent qubit frequencies we obtain the “chevron plot” which can be used to

calibrate the qubit frequency. c, The Rabi oscillation frequency versus qubit pulse frequency. As we discussed

in Chapter 2, the minimum oscillation rate corresponds to the maximum contrast for Rabi oscillations which

happens when the qubit pulse is on-resonance with qubit frequency.

After doing this calibration, we know the power, frequency and the duration for ⇡-pulse and

⇡/2-pulse.

3.3.5 T1 Measurement

One of the main characteristics of a qubit is its relaxation time. In order to measure the

lifetime of the qubit we do the following sequence: 1) We prepare the qubit in the excited

state by sending a ⇡-pulse to the qubit. 2) We wait for time t, then 3) we measure the qubit

state by sending readout pulse to the cavity. Therefore we use the same setup that we had

in for Rabi oscillation measurements (see Figure 3.19 for schematics) but we use a slightly

di↵erent sequence from the AWG. Figure 3.21 summarizes the sequence and a result we get

from a T1 measurement.

3.3.6 Ramsey Measurement (T ⇤
2 )

With Ramsey measurement, we characterize the dephasing time for the qubit, T
⇤
2 . For

that, again we use the same setup as we had for measurements of Rabi oscillations (see

Figure 3.19). The Ramsey sequence follows as: 1) prepare the qubit in superposition state

1/
p
2(|gi + i|ei) by applying a ⇡/2-pulse to the qubit. 2) Wait for a time, then t 3) apply

another ⇡/2-pulse to bring back the qubit to ground state1 and immediately 4) perform

readout. The sequence for Ramsey measurement and the result has been shown in fig 3.22.

1If the last ⇡/2-pulse has the same phase as the first ⇡/2-pulse we will put the qubit in the excited state.
If we do negative pulse (opposite rotation) we bring the qubit back to ground state. Either way is fine, all
we need is to bring the qubit to an eigenstate.
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Figure 3.19: Rabi measurement: The sequence for the measurement of Rabi oscillations and the typical

room temperature circuitry are shown.

shift to readout the state of the qubit. Figure 3.20 shows a typical Rabi oscillation. The

reason we use a rather short Rabi time (100-200 ns) for Rabi measurement is because we

will use this Rabi sequence to calibrate preparation pulses (⇡-pulse and ⇡/2-pulse) which

are normally short pulses1. In this step, we may also tweak the readout power, frequency,

and phase to maximize the oscillation contrast as depicted in Figure 3.20a.

In order to calibrate ⇡-pulses, we first need to make sure that the qubit frequency is

accurate and oscillations are on-resonance with the qubit. One way to check this is to sweep

the qubit frequency while performing Rabi oscillation measurements. The resulting 2D color

plot is called “chevron plot”. By fitting a sine-wave to the oscillations, one can find the best

estimate of the minimum oscillation frequency which is the qubit frequency2. Later we will

see that with Ramsey measurement we can have a better estimation of the qubit frequency.

1Moreover it is wise to start o↵ by a short sequence for the experiment because we might have a qubit
with short decoherence times or there might be some calibration issue in the system which could make it
hard to see the qubit evolution at longer qubit evolution times.

2Rabi spectroscopy is not super sensitive to the detuning in the regime of fast Rabi oscillation. Moreover,
one might think that with a stronger drive we might also stark shift the qubit. So, one would think in order to
find qubit frequency it is better to have longer Rabi sequence and slower Rabi oscillation to improve precision.
But since our main concern is ⇡-pulse calibration, it makes sense to do Rabi spectroscopy (chevron plot)
with actual power that we are going to use for the ⇡-pulses.
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Figure 3.19: Rabi measurement: The sequence for the measurement of Rabi oscillations and the typical

room temperature circuitry are shown.

shift to readout the state of the qubit. Figure 3.20 shows a typical Rabi oscillation. The

reason we use a rather short Rabi time (100-200 ns) for Rabi measurement is because we

will use this Rabi sequence to calibrate preparation pulses (⇡-pulse and ⇡/2-pulse) which

are normally short pulses
1
. In this step, we may also tweak the readout power, frequency,

and phase to maximize the oscillation contrast as depicted in Figure 3.20a.

In order to calibrate ⇡-pulses, we first need to make sure that the qubit frequency is

accurate and oscillations are on-resonance with the qubit. One way to check this is to sweep

the qubit frequency while performing Rabi oscillation measurements. The resulting 2D color

plot is called “chevron plot”. By fitting a sine-wave to the oscillations, one can find the best

estimate of the minimum oscillation frequency which is the qubit frequency
2
. Later we will

see that with Ramsey measurement we can have a better estimation of the qubit frequency.

1Moreover it is wise to start o↵ by a short sequence for the experiment because we might have a qubit
with short decoherence times or there might be some calibration issue in the system which could make it
hard to see the qubit evolution at longer qubit evolution times.

2Rabi spectroscopy is not super sensitive to the detuning in the regime of fast Rabi oscillation. Moreover,
one might think that with a stronger drive we might also stark shift the qubit. So, one would think in order to
find qubit frequency it is better to have longer Rabi sequence and slower Rabi oscillation to improve precision.
But since our main concern is ⇡-pulse calibration, it makes sense to do Rabi spectroscopy (chevron plot)
with actual power that we are going to use for the ⇡-pulses.
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Figure 3.19: Rabi measurement: The sequence for the measurement of Rabi oscillations and the typical

room temperature circuitry are shown.

shift to readout the state of the qubit. Figure 3.20 shows a typical Rabi oscillation. The

reason we use a rather short Rabi time (100-200 ns) for Rabi measurement is because we

will use this Rabi sequence to calibrate preparation pulses (⇡-pulse and ⇡/2-pulse) which

are normally short pulses1. In this step, we may also tweak the readout power, frequency,

and phase to maximize the oscillation contrast as depicted in Figure 3.20a.

In order to calibrate ⇡-pulses, we first need to make sure that the qubit frequency is

accurate and oscillations are on-resonance with the qubit. One way to check this is to sweep

the qubit frequency while performing Rabi oscillation measurements. The resulting 2D color

plot is called “chevron plot”. By fitting a sine-wave to the oscillations, one can find the best

estimate of the minimum oscillation frequency which is the qubit frequency2. Later we will

see that with Ramsey measurement we can have a better estimation of the qubit frequency.

1Moreover it is wise to start o↵ by a short sequence for the experiment because we might have a qubit
with short decoherence times or there might be some calibration issue in the system which could make it
hard to see the qubit evolution at longer qubit evolution times.

2Rabi spectroscopy is not super sensitive to the detuning in the regime of fast Rabi oscillation. Moreover,
one might think that with a stronger drive we might also stark shift the qubit. So, one would think in order to
find qubit frequency it is better to have longer Rabi sequence and slower Rabi oscillation to improve precision.
But since our main concern is ⇡-pulse calibration, it makes sense to do Rabi spectroscopy (chevron plot)
with actual power that we are going to use for the ⇡-pulses.
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Figure 3.20: Chevron plot: a, A typical result of Rabi oscillation measurements. b, By repeating

the Rabi measurement for di↵erent qubit frequencies we obtain the “chevron plot” which can be used to

calibrate the qubit frequency. c, The Rabi oscillation frequency versus qubit pulse frequency. As we discussed

in Chapter 2, the minimum oscillation rate corresponds to the maximum contrast for Rabi oscillations which

happens when the qubit pulse is on-resonance with qubit frequency.

After doing this calibration, we know the power, frequency and the duration for ⇡-pulse and

⇡/2-pulse.

3.3.5 T1 Measurement

One of the main characteristics of a qubit is its relaxation time. In order to measure the

lifetime of the qubit we do the following sequence: 1) We prepare the qubit in the excited

state by sending a ⇡-pulse to the qubit. 2) We wait for time t, then 3) we measure the qubit

state by sending readout pulse to the cavity. Therefore we use the same setup that we had

in for Rabi oscillation measurements (see Figure 3.19 for schematics) but we use a slightly

di↵erent sequence from the AWG. Figure 3.21 summarizes the sequence and a result we get

from a T1 measurement.

3.3.6 Ramsey Measurement (T ⇤
2 )

With Ramsey measurement, we characterize the dephasing time for the qubit, T
⇤
2 . For

that, again we use the same setup as we had for measurements of Rabi oscillations (see

Figure 3.19). The Ramsey sequence follows as: 1) prepare the qubit in superposition state

1/
p
2(|gi + i|ei) by applying a ⇡/2-pulse to the qubit. 2) Wait for a time, then t 3) apply

another ⇡/2-pulse to bring back the qubit to ground state1 and immediately 4) perform

readout. The sequence for Ramsey measurement and the result has been shown in fig 3.22.

1If the last ⇡/2-pulse has the same phase as the first ⇡/2-pulse we will put the qubit in the excited state.
If we do negative pulse (opposite rotation) we bring the qubit back to ground state. Either way is fine, all
we need is to bring the qubit to an eigenstate.
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Figure 3.20: Chevron plot: a, A typical result of Rabi oscillation measurements. b, By repeating

the Rabi measurement for di↵erent qubit frequencies we obtain the “chevron plot” which can be used to

calibrate the qubit frequency. c, The Rabi oscillation frequency versus qubit pulse frequency. As we discussed

in Chapter 2, the minimum oscillation rate corresponds to the maximum contrast for Rabi oscillations which

happens when the qubit pulse is on-resonance with qubit frequency.

After doing this calibration, we know the power, frequency and the duration for ⇡-pulse and

⇡/2-pulse.

3.3.5 T1 Measurement

One of the main characteristics of a qubit is its relaxation time. In order to measure the

lifetime of the qubit we do the following sequence: 1) We prepare the qubit in the excited

state by sending a ⇡-pulse to the qubit. 2) We wait for time t, then 3) we measure the qubit

state by sending readout pulse to the cavity. Therefore we use the same setup that we had

in for Rabi oscillation measurements (see Figure 3.19 for schematics) but we use a slightly

di↵erent sequence from the AWG. Figure 3.21 summarizes the sequence and a result we get

from a T1 measurement.

3.3.6 Ramsey Measurement (T ⇤
2 )

With Ramsey measurement, we characterize the dephasing time for the qubit, T
⇤
2 . For

that, again we use the same setup as we had for measurements of Rabi oscillations (see

Figure 3.19). The Ramsey sequence follows as: 1) prepare the qubit in superposition state

1/
p
2(|gi + i|ei) by applying a ⇡/2-pulse to the qubit. 2) Wait for a time, then t 3) apply

another ⇡/2-pulse to bring back the qubit to ground state1 and immediately 4) perform

readout. The sequence for Ramsey measurement and the result has been shown in fig 3.22.

1If the last ⇡/2-pulse has the same phase as the first ⇡/2-pulse we will put the qubit in the excited state.
If we do negative pulse (opposite rotation) we bring the qubit back to ground state. Either way is fine, all
we need is to bring the qubit to an eigenstate.
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Figure 3.19: Rabi measurement: The sequence for the measurement of Rabi oscillations and the typical

room temperature circuitry are shown.

shift to readout the state of the qubit. Figure 3.20 shows a typical Rabi oscillation. The

reason we use a rather short Rabi time (100-200 ns) for Rabi measurement is because we

will use this Rabi sequence to calibrate preparation pulses (⇡-pulse and ⇡/2-pulse) which

are normally short pulses1. In this step, we may also tweak the readout power, frequency,

and phase to maximize the oscillation contrast as depicted in Figure 3.20a.

In order to calibrate ⇡-pulses, we first need to make sure that the qubit frequency is

accurate and oscillations are on-resonance with the qubit. One way to check this is to sweep

the qubit frequency while performing Rabi oscillation measurements. The resulting 2D color

plot is called “chevron plot”. By fitting a sine-wave to the oscillations, one can find the best

estimate of the minimum oscillation frequency which is the qubit frequency2. Later we will

see that with Ramsey measurement we can have a better estimation of the qubit frequency.

1Moreover it is wise to start o↵ by a short sequence for the experiment because we might have a qubit
with short decoherence times or there might be some calibration issue in the system which could make it
hard to see the qubit evolution at longer qubit evolution times.

2Rabi spectroscopy is not super sensitive to the detuning in the regime of fast Rabi oscillation. Moreover,
one might think that with a stronger drive we might also stark shift the qubit. So, one would think in order to
find qubit frequency it is better to have longer Rabi sequence and slower Rabi oscillation to improve precision.
But since our main concern is ⇡-pulse calibration, it makes sense to do Rabi spectroscopy (chevron plot)
with actual power that we are going to use for the ⇡-pulses.
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Figure 3.19: Rabi measurement: The sequence for the measurement of Rabi oscillations and the typical

room temperature circuitry are shown.

shift to readout the state of the qubit. Figure 3.20 shows a typical Rabi oscillation. The

reason we use a rather short Rabi time (100-200 ns) for Rabi measurement is because we

will use this Rabi sequence to calibrate preparation pulses (⇡-pulse and ⇡/2-pulse) which

are normally short pulses
1
. In this step, we may also tweak the readout power, frequency,

and phase to maximize the oscillation contrast as depicted in Figure 3.20a.

In order to calibrate ⇡-pulses, we first need to make sure that the qubit frequency is

accurate and oscillations are on-resonance with the qubit. One way to check this is to sweep

the qubit frequency while performing Rabi oscillation measurements. The resulting 2D color

plot is called “chevron plot”. By fitting a sine-wave to the oscillations, one can find the best

estimate of the minimum oscillation frequency which is the qubit frequency
2
. Later we will

see that with Ramsey measurement we can have a better estimation of the qubit frequency.

1Moreover it is wise to start o↵ by a short sequence for the experiment because we might have a qubit
with short decoherence times or there might be some calibration issue in the system which could make it
hard to see the qubit evolution at longer qubit evolution times.

2Rabi spectroscopy is not super sensitive to the detuning in the regime of fast Rabi oscillation. Moreover,
one might think that with a stronger drive we might also stark shift the qubit. So, one would think in order to
find qubit frequency it is better to have longer Rabi sequence and slower Rabi oscillation to improve precision.
But since our main concern is ⇡-pulse calibration, it makes sense to do Rabi spectroscopy (chevron plot)
with actual power that we are going to use for the ⇡-pulses.
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Figure 3.19: Rabi measurement: The sequence for the measurement of Rabi oscillations and the typical

room temperature circuitry are shown.

shift to readout the state of the qubit. Figure 3.20 shows a typical Rabi oscillation. The

reason we use a rather short Rabi time (100-200 ns) for Rabi measurement is because we

will use this Rabi sequence to calibrate preparation pulses (⇡-pulse and ⇡/2-pulse) which

are normally short pulses1. In this step, we may also tweak the readout power, frequency,

and phase to maximize the oscillation contrast as depicted in Figure 3.20a.

In order to calibrate ⇡-pulses, we first need to make sure that the qubit frequency is

accurate and oscillations are on-resonance with the qubit. One way to check this is to sweep

the qubit frequency while performing Rabi oscillation measurements. The resulting 2D color

plot is called “chevron plot”. By fitting a sine-wave to the oscillations, one can find the best

estimate of the minimum oscillation frequency which is the qubit frequency2. Later we will

see that with Ramsey measurement we can have a better estimation of the qubit frequency.

1Moreover it is wise to start o↵ by a short sequence for the experiment because we might have a qubit
with short decoherence times or there might be some calibration issue in the system which could make it
hard to see the qubit evolution at longer qubit evolution times.

2Rabi spectroscopy is not super sensitive to the detuning in the regime of fast Rabi oscillation. Moreover,
one might think that with a stronger drive we might also stark shift the qubit. So, one would think in order to
find qubit frequency it is better to have longer Rabi sequence and slower Rabi oscillation to improve precision.
But since our main concern is ⇡-pulse calibration, it makes sense to do Rabi spectroscopy (chevron plot)
with actual power that we are going to use for the ⇡-pulses.
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Figure 3.20: Chevron plot: a, A typical result of Rabi oscillation measurements. b, By repeating

the Rabi measurement for di↵erent qubit frequencies we obtain the “chevron plot” which can be used to

calibrate the qubit frequency. c, The Rabi oscillation frequency versus qubit pulse frequency. As we discussed

in Chapter 2, the minimum oscillation rate corresponds to the maximum contrast for Rabi oscillations which

happens when the qubit pulse is on-resonance with qubit frequency.

After doing this calibration, we know the power, frequency and the duration for ⇡-pulse and

⇡/2-pulse.

3.3.5 T1 Measurement

One of the main characteristics of a qubit is its relaxation time. In order to measure the

lifetime of the qubit we do the following sequence: 1) We prepare the qubit in the excited

state by sending a ⇡-pulse to the qubit. 2) We wait for time t, then 3) we measure the qubit

state by sending readout pulse to the cavity. Therefore we use the same setup that we had

in for Rabi oscillation measurements (see Figure 3.19 for schematics) but we use a slightly

di↵erent sequence from the AWG. Figure 3.21 summarizes the sequence and a result we get

from a T1 measurement.

3.3.6 Ramsey Measurement (T ⇤
2 )

With Ramsey measurement, we characterize the dephasing time for the qubit, T
⇤
2 . For

that, again we use the same setup as we had for measurements of Rabi oscillations (see

Figure 3.19). The Ramsey sequence follows as: 1) prepare the qubit in superposition state

1/
p
2(|gi + i|ei) by applying a ⇡/2-pulse to the qubit. 2) Wait for a time, then t 3) apply

another ⇡/2-pulse to bring back the qubit to ground state1 and immediately 4) perform

readout. The sequence for Ramsey measurement and the result has been shown in fig 3.22.

1If the last ⇡/2-pulse has the same phase as the first ⇡/2-pulse we will put the qubit in the excited state.
If we do negative pulse (opposite rotation) we bring the qubit back to ground state. Either way is fine, all
we need is to bring the qubit to an eigenstate.
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Figure 3.20: Chevron plot: a, A typical result of Rabi oscillation measurements. b, By repeating

the Rabi measurement for di↵erent qubit frequencies we obtain the “chevron plot” which can be used to

calibrate the qubit frequency. c, The Rabi oscillation frequency versus qubit pulse frequency. As we discussed

in Chapter 2, the minimum oscillation rate corresponds to the maximum contrast for Rabi oscillations which

happens when the qubit pulse is on-resonance with qubit frequency.

After doing this calibration, we know the power, frequency and the duration for ⇡-pulse and

⇡/2-pulse.

3.3.5 T1 Measurement

One of the main characteristics of a qubit is its relaxation time. In order to measure the

lifetime of the qubit we do the following sequence: 1) We prepare the qubit in the excited

state by sending a ⇡-pulse to the qubit. 2) We wait for time t, then 3) we measure the qubit

state by sending readout pulse to the cavity. Therefore we use the same setup that we had

in for Rabi oscillation measurements (see Figure 3.19 for schematics) but we use a slightly

di↵erent sequence from the AWG. Figure 3.21 summarizes the sequence and a result we get

from a T1 measurement.

3.3.6 Ramsey Measurement (T ⇤
2 )

With Ramsey measurement, we characterize the dephasing time for the qubit, T
⇤
2 . For

that, again we use the same setup as we had for measurements of Rabi oscillations (see

Figure 3.19). The Ramsey sequence follows as: 1) prepare the qubit in superposition state

1/
p
2(|gi + i|ei) by applying a ⇡/2-pulse to the qubit. 2) Wait for a time, then t 3) apply

another ⇡/2-pulse to bring back the qubit to ground state1 and immediately 4) perform

readout. The sequence for Ramsey measurement and the result has been shown in fig 3.22.

1If the last ⇡/2-pulse has the same phase as the first ⇡/2-pulse we will put the qubit in the excited state.
If we do negative pulse (opposite rotation) we bring the qubit back to ground state. Either way is fine, all
we need is to bring the qubit to an eigenstate.
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Figure 3.20: Chevron plot: a, A typical result of Rabi oscillation measurements. b, By repeating

the Rabi measurement for di↵erent qubit frequencies we obtain the “chevron plot” which can be used to

calibrate the qubit frequency. c, The Rabi oscillation frequency versus qubit pulse frequency. As we discussed

in Chapter 2, the minimum oscillation rate corresponds to the maximum contrast for Rabi oscillations which

happens when the qubit pulse is on-resonance with qubit frequency.

After doing this calibration, we know the power, frequency and the duration for ⇡-pulse and

⇡/2-pulse.

3.3.5 T1 Measurement

One of the main characteristics of a qubit is its relaxation time. In order to measure the

lifetime of the qubit we do the following sequence: 1) We prepare the qubit in the excited

state by sending a ⇡-pulse to the qubit. 2) We wait for time t, then 3) we measure the qubit

state by sending readout pulse to the cavity. Therefore we use the same setup that we had

in for Rabi oscillation measurements (see Figure 3.19 for schematics) but we use a slightly

di↵erent sequence from the AWG. Figure 3.21 summarizes the sequence and a result we get

from a T1 measurement.

3.3.6 Ramsey Measurement (T ⇤
2 )

With Ramsey measurement, we characterize the dephasing time for the qubit, T
⇤
2 . For

that, again we use the same setup as we had for measurements of Rabi oscillations (see

Figure 3.19). The Ramsey sequence follows as: 1) prepare the qubit in superposition state

1/
p
2(|gi + i|ei) by applying a ⇡/2-pulse to the qubit. 2) Wait for a time, then t 3) apply

another ⇡/2-pulse to bring back the qubit to ground state1 and immediately 4) perform

readout. The sequence for Ramsey measurement and the result has been shown in fig 3.22.

1If the last ⇡/2-pulse has the same phase as the first ⇡/2-pulse we will put the qubit in the excited state.
If we do negative pulse (opposite rotation) we bring the qubit back to ground state. Either way is fine, all
we need is to bring the qubit to an eigenstate.
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Figure 3.20: Chevron plot: a, A typical result of Rabi oscillation measurements. b, By repeating

the Rabi measurement for di↵erent qubit frequencies we obtain the “chevron plot” which can be used to

calibrate the qubit frequency. c, The Rabi oscillation frequency versus qubit pulse frequency. As we discussed

in Chapter 2, the minimum oscillation rate corresponds to the maximum contrast for Rabi oscillations which

happens when the qubit pulse is on-resonance with qubit frequency.

After doing this calibration, we know the power, frequency and the duration for ⇡-pulse and

⇡/2-pulse.

3.3.5 T1 Measurement

One of the main characteristics of a qubit is its relaxation time. In order to measure the

lifetime of the qubit we do the following sequence: 1) We prepare the qubit in the excited

state by sending a ⇡-pulse to the qubit. 2) We wait for time t, then 3) we measure the qubit

state by sending readout pulse to the cavity. Therefore we use the same setup that we had

in for Rabi oscillation measurements (see Figure 3.19 for schematics) but we use a slightly

di↵erent sequence from the AWG. Figure 3.21 summarizes the sequence and a result we get

from a T1 measurement.

3.3.6 Ramsey Measurement (T ⇤
2 )

With Ramsey measurement, we characterize the dephasing time for the qubit, T
⇤
2 . For

that, again we use the same setup as we had for measurements of Rabi oscillations (see

Figure 3.19). The Ramsey sequence follows as: 1) prepare the qubit in superposition state

1/
p
2(|gi + i|ei) by applying a ⇡/2-pulse to the qubit. 2) Wait for a time, then t 3) apply

another ⇡/2-pulse to bring back the qubit to ground state1 and immediately 4) perform

readout. The sequence for Ramsey measurement and the result has been shown in fig 3.22.

1If the last ⇡/2-pulse has the same phase as the first ⇡/2-pulse we will put the qubit in the excited state.
If we do negative pulse (opposite rotation) we bring the qubit back to ground state. Either way is fine, all
we need is to bring the qubit to an eigenstate.
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Figure 3.20: Chevron plot: a, A typical result of Rabi oscillation measurements. b, By repeating

the Rabi measurement for di↵erent qubit frequencies we obtain the “chevron plot” which can be used to

calibrate the qubit frequency. c, The Rabi oscillation frequency versus qubit pulse frequency. As we discussed

in Chapter 2, the minimum oscillation rate corresponds to the maximum contrast for Rabi oscillations which

happens when the qubit pulse is on-resonance with qubit frequency.

After doing this calibration, we know the power, frequency and the duration for ⇡-pulse and

⇡/2-pulse.

3.3.5 T1 Measurement

One of the main characteristics of a qubit is its relaxation time. In order to measure the

lifetime of the qubit we do the following sequence: 1) We prepare the qubit in the excited

state by sending a ⇡-pulse to the qubit. 2) We wait for time t, then 3) we measure the qubit

state by sending readout pulse to the cavity. Therefore we use the same setup that we had

in for Rabi oscillation measurements (see Figure 3.19 for schematics) but we use a slightly

di↵erent sequence from the AWG. Figure 3.21 summarizes the sequence and a result we get

from a T1 measurement.

3.3.6 Ramsey Measurement (T ⇤
2 )

With Ramsey measurement, we characterize the dephasing time for the qubit, T
⇤
2 . For

that, again we use the same setup as we had for measurements of Rabi oscillations (see

Figure 3.19). The Ramsey sequence follows as: 1) prepare the qubit in superposition state

1/
p
2(|gi + i|ei) by applying a ⇡/2-pulse to the qubit. 2) Wait for a time, then t 3) apply

another ⇡/2-pulse to bring back the qubit to ground state1 and immediately 4) perform

readout. The sequence for Ramsey measurement and the result has been shown in fig 3.22.

1If the last ⇡/2-pulse has the same phase as the first ⇡/2-pulse we will put the qubit in the excited state.
If we do negative pulse (opposite rotation) we bring the qubit back to ground state. Either way is fine, all
we need is to bring the qubit to an eigenstate.
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Figure 3.20: Chevron plot: a, A typical result of Rabi oscillation measurements. b, By repeating

the Rabi measurement for di↵erent qubit frequencies we obtain the “chevron plot” which can be used to

calibrate the qubit frequency. c, The Rabi oscillation frequency versus qubit pulse frequency. As we discussed

in Chapter 2, the minimum oscillation rate corresponds to the maximum contrast for Rabi oscillations which

happens when the qubit pulse is on-resonance with qubit frequency.

After doing this calibration, we know the power, frequency and the duration for ⇡-pulse and

⇡/2-pulse.

3.3.5 T1 Measurement

One of the main characteristics of a qubit is its relaxation time. In order to measure the

lifetime of the qubit we do the following sequence: 1) We prepare the qubit in the excited

state by sending a ⇡-pulse to the qubit. 2) We wait for time t, then 3) we measure the qubit

state by sending readout pulse to the cavity. Therefore we use the same setup that we had

in for Rabi oscillation measurements (see Figure 3.19 for schematics) but we use a slightly

di↵erent sequence from the AWG. Figure 3.21 summarizes the sequence and a result we get

from a T1 measurement.

3.3.6 Ramsey Measurement (T ⇤
2 )

With Ramsey measurement, we characterize the dephasing time for the qubit, T
⇤
2 . For

that, again we use the same setup as we had for measurements of Rabi oscillations (see

Figure 3.19). The Ramsey sequence follows as: 1) prepare the qubit in superposition state

1/
p
2(|gi + i|ei) by applying a ⇡/2-pulse to the qubit. 2) Wait for a time, then t 3) apply

another ⇡/2-pulse to bring back the qubit to ground state1 and immediately 4) perform

readout. The sequence for Ramsey measurement and the result has been shown in fig 3.22.

1If the last ⇡/2-pulse has the same phase as the first ⇡/2-pulse we will put the qubit in the excited state.
If we do negative pulse (opposite rotation) we bring the qubit back to ground state. Either way is fine, all
we need is to bring the qubit to an eigenstate.
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Figure 3.21: T1 Measurement: The T1 measurement sequence (consider the experimental setup depicted

in Figure 3.19) and a typical result. The qubit lifetime (relaxation time T1) can be measured by fitting the

result to an exponential decay function.

3.3.7 Full state tomography

The qubit readout projects the state of the qubit along z axis. Therefore one can determine

the expectation value for �z operator as,

z = h�zi = Pg � Pe =
N+ �N�

N+ +N�
± 2

r
N+N�

N3
. (3.3.2)

Similarly, one can determine the expectation value for �x and �y as well by applying a 90

degree rotation pulse along y and x respectively right before the readout1. Therefore, a

full tomography sequence has 3 copy of each sequence with no rotation (z), ⇡/2-rotation in

phase (x), and ⇡/2-rotation 90 degree out phase (y) right before the readout as depicted in

figure 3.23. The expectation values for �x and �y, can be determined in a same way,

x = h�xi = P
(x)
g � P

(x)
e =

N+ �N�

N+ +N�
(3.3.3)

y = h�yi = P
(y)
g � P

(y)
e =

N+ �N�

N+ +N�
, (3.3.4)

where superscripts (x) and (y) indicate that the readout has in-phase and out-of-phase rota-

tion pulse respectively.

1This is exactly what we do in Ramsey where we prepare the qubit in x and measure hxi.
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Figure 3.22: Ramsey measurement: The sequence for the Ramsey measurement (consider the exper-

imental setup depicted in Figure 3.19) and the typical Ramsey result. The blue (red) curve is when the

pulses are on-resonance (0.3 MHz o↵-resonance) with the qubit frequency. The dephasing time T
⇤
2 can be

determined by fitting the data to exponentially decaying sine function F (t) = A+B sin(2⇡�dt+�) exp(t/T ⇤
2 ).

3.4 Josephson Parametric Amplifier

The signals that carry quantum information at cryogenic temperature are feeble microwave

signals. Especially for weak measurement, these signals often contain ⇠ 1 photon per mi-

crosecond or less on average. Therefore measurement signals need to be amplified before

processing at room temperature where they would otherwise be contaminated by thermal

noise. Amplification is essential and often multiple steps of amplification are needed. How-

ever, amplifiers add some noise to the signal at each step of amplification. The added noise

is not just a technical subtlety but it is rather a fundamental property of quantum mechan-

ics [76].

In this section I follow the discussion in Ref. [76] and briefly discuss the Josephson

parametric amplifier and phase sensitive amplification. I will try to connect the discussion

to the previous chapters and add some points from the experimental perspective. For a

detailed study of noise and amplification see the nice discussions in Ref. [76].

3.4.1 Classical nonlinear oscillators

Similar to the transmon circuit discussed in Chapter 2, the Josephson parametric amplifier

(JPA) is a nonlinear oscillator except that the critical current is much higher for a JPA1

compared to the transmon. This means that for JPA there are many more energy levels

bound in the potential. Moreover, a higher critical current means a weaker nonlinearity.

Therefore a JPA can be treated classically as an oscillator which has a weak nonlinearity.

1Typically I
(JPA)
0 ⇠ 10I(Transmon)

0 , (EJ/Ec)(JPA) = 100(EJ/Ec)(Transmon).
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